

DiDive Inve Inttoo

DEDESSIGNIGN
PPAATTTERNTERNSS

v2021-2.28

DEMO VERSION

Buy the full book:

https://refactoring.guru/design-patterns/book

A Few Words on Copyright

Hi! My name is Alexander Shvets. I’m

the author of the book Dive Into

Design Patterns and the online course

Dive Into Refactoring.

This book is for your personal use only.

Please don’t share it with any third

parties except your family members. If you’d like to share the

book with a friend or colleague, buy and send them a new

copy. You can also buy a site license for your whole team or the

entire company.

All profit from the sale of my books and courses is spent on

the development of Refactoring.Guru. Each copy sold helps

the project immensely and brings the moment of a new book

release a little bit closer.

 Alexander Shvets, Refactoring.Guru, 2021

 support@refactoring.guru

 Illustrations: Dmitry Zhart

 Editing: Andrew Wetmore, Rhyan Solomon

https://refactoring.guru/design-patterns/book
https://refactoring.guru/design-patterns/book
https://refactoring.guru/refactoring/course
mailto:support@refactoring.guru

I dedicate this book to my wife, Maria. If it

hadn’t been for her, I’d probably have finished

the book some 30 years later.

Table of Contents
Table of Contents .. 4

How to Read This Book ... 6

INTRODUCTION TO OOP .. 7

Basics of OOP..8

Pillars of OOP... 13

Relations Between Objects.. 20

INTRODUCTION TO DESIGN PATTERNS ... 26

What’s a Design Pattern?.. 27

Why Should I Learn Patterns?... 31

SOFTWARE DESIGN PRINCIPLES ... 32

Features of Good Design.. 33

Design Principles... 37

§ Encapsulate What Varies.. 38

§ Program to an Interface, not an Implementation 42

§ Favor Composition Over Inheritance................................. 47

SOLID Principles ... 51

§ Single Responsibility Principle .. 52

§ Open/Closed Principle.. 54

§ Liskov Substitution Principle.. 57

§ Interface Segregation Principle... 64

§ Dependency Inversion Principle ... 67

4 Table of Contents

CATALOG OF DESIGN PATTERNS .. 71

Creational Design Patterns... 72

§ Factory Method ... 74

§ Abstract Factory .. 90

§ Builder ..105

§ Prototype ...124

§ Singleton ...138

Structural Design Patterns ... 147

§ Adapter...150

§ Bridge ...163

§ Composite ...178

§ Decorator ...192

§ Facade ..210

§ Flyweight...220

§ Proxy ...234

Behavioral Design Patterns .. 246

§ Chain of Responsibility...250

§ Command ..268

§ Iterator..289

§ Mediator...304

§ Memento..320

§ Observer...336

§ State ..352

§ Strategy..368

§ Template Method..381

§ Visitor..393

Conclusion ... 409

5 Table of Contents

How to Read This Book

This book contains the descriptions of 22 classic design pat-

terns formulated by the “Gang of Four” (or simply GoF) in 1994.

Each chapter explores a particular pattern. Therefore, you can

read from cover to cover or by picking the patterns you’re inter-

ested in.

Many patterns are related, so you can easily jump from topic

to topic using numerous anchors. The end of each chapter has

a list of links between the current pattern and others. If you

see the name of a pattern that you haven’t seen yet, just keep

reading—this item will appear in one of the next chapters.

Design patterns are universal. Therefore, all code samples in

this book are written in pseudocode that doesn’t constrain the

material to a particular programming language.

Prior to studying patterns, you can refresh your memory by

going over the key terms of object-oriented programming.

That chapter also explains the basics of UML diagrams, which

is useful because the book has tons of them. Of course, if you

already know all of that, you can proceed to learning patterns

right away.

6 How to read this book

INTRODUCTION
TO OOP

Basics of OOP
Object-oriented programming is a paradigm based on the con-

cept of wrapping pieces of data, and behavior related to that

data, into special bundles called objects, which are construct-

ed from a set of “blueprints”, defined by a programmer, called

classes.

Objects, classes

Do you like cats? I hope you do because I’ll try to explain the

OOP concepts using various cat examples.

This is a UML class diagram. You’ll see a lot of such diagrams in the book.

8 Introduction to OOP / Basics of OOP

Say you have a cat named Oscar. Oscar is an object, an instance

of the Cat class. Every cat has a lot of standard attributes:

name, sex, age, weight, color, favorite food, etc. These are the

class’s fields.

All cats also behave similarly: they breathe, eat, run, sleep and

meow. These are the class’s methods. Collectively, fields and

methods can be referenced as the members of their class.

Data stored inside the object’s fields is often referenced

as state, and all the object’s methods define its behavior.

Objects are instances of classes.

9 Introduction to OOP / Basics of OOP

Luna, your friend’s cat, is also an instance of the Cat class.

It has the same set of attributes as Oscar. The difference is in

values of these attributes: its sex is female, it has a different

color, and weighs less.

So a class is like a blueprint that defines the structure for

objects, which are concrete instances of that class.

Class hierarchies

Everything fine and dandy when we talk about one class. Nat-

urally, a real program contains more than a single class. Some

of these classes might be organized into class hierarchies. Let’s

find out what that means.

Say your neighbor has a dog called Fido. It turns out, dogs

and cats have a lot in common: name, sex, age, and color are

attributes of both dogs and cats. Dogs can breathe, sleep and

run the same way cats do. So it seems that we can define the

base Animal class that would list the common attributes and

behaviors.

A parent class, like the one we’ve just defined, is called a

superclass. Its children are subclasses. Subclasses inherit state

and behavior from their parent, defining only attributes or

behaviors that differ. Thus, the Cat class would have the

meow method, and the Dog class the bark method.

10 Introduction to OOP / Basics of OOP

UML diagram of a class hierarchy. All classes in this diagram are part of

the Animal class hierarchy.

Assuming that we have a related business requirement, we can

go even further and extract a more general class for all liv-

ing Organisms which will become a superclass for Animals

and Plants . Such a pyramid of classes is a hierarchy. In such

a hierarchy, the Cat class inherits everything from both the

Animal and Organism classes.

11 Introduction to OOP / Basics of OOP

Classes in a UML diagram can be simplified if it’s more important to show

their relations than their contents.

Subclasses can override the behavior of methods that they

inherit from parent classes. A subclass can either complete-

ly replace the default behavior or just enhance it with some

extra stuff.

12 Introduction to OOP / Basics of OOP

19 pages

from the full book are omitted in the demo version

SOFTWARE DESIGN
PRINCIPLES

Features of Good Design
Before we proceed to the actual patterns, let’s discuss the

process of designing software architecture: things to aim for

and things you’d better avoid.

Code reuse

Cost and time are two of the most valuable metrics when

developing any software product. Less time in development

means entering the market earlier than competitors. Lower

development costs mean more money is left for marketing and

a broader reach to potential customers.

Code reuse is one of the most common ways to reduce devel-

opment costs. The intent is pretty obvious: instead of develop-

ing something over and over from scratch, why don’t we reuse

existing code in new projects?

The idea looks great on paper, but it turns out that making

existing code work in a new context usually takes extra effort.

Tight coupling between components, dependencies on con-

crete classes instead of interfaces, hardcoded operations—all

of this reduces flexibility of the code and makes it harder to

reuse it.

Using design patterns is one way to increase flexibility of soft-

ware components and make them easier to reuse. However,



33 Software Design Principles / Features of Good Design

this sometimes comes at the price of making the components

more complicated.

Here’s a piece of wisdom from Erich Gamma 1, one of the

founding fathers of design patterns, about the role of design

patterns in code reuse:

I see three levels of reuse.

At the lowest level, you reuse classes: class libraries, contain-

ers, maybe some class “teams” like container/iterator.

Frameworks are at the highest level. They really try to dis-

till your design decisions. They identify the key abstractions

for solving a problem, represent them by classes and define

relationships between them. JUnit is a small framework, for

example. It is the “Hello, world” of frameworks. It has Test ,

TestCase , TestSuite and relationships defined.

A framework is typically larger-grained than just a single class.

Also, you hook into frameworks by subclassing somewhere.

They use the so-called Hollywood principle of “don’t call us,

we’ll call you.” The framework lets you define your custom

behavior, and it will call you when it’s your turn to do some-

thing. Same with JUnit, right? It calls you when it wants to exe-

cute a test for you, but the rest happens in the framework.

There also is a middle level. This is where I see patterns.

Design patterns are both smaller and more abstract than

“

1. Erich Gamma on Flexibility and Reuse: https://refactoring.guru/

gamma-interview

34 Software Design Principles / Code reuse

https://refactoring.guru/gamma-interview
https://refactoring.guru/gamma-interview

Extensibility

Change is the only constant thing in a programmer’s life.

• You released a video game for Windows, but now people ask

for a macOS version.

• You created a GUI framework with square buttons, but several

months later round buttons become a trend.

• You designed a brilliant e-commerce website architecture, but

just a month later customers ask for a feature that would let

them accept phone orders.

Each software developer has dozens of similar stories. There

are several reasons why this happens.

First, we understand the problem better once we start to solve

it. Often by the time you finish the first version of an app,

frameworks. They’re really a description about how a couple of

classes can relate to and interact with each other. The level of

reuse increases when you move from classes to patterns and

finally frameworks.

What is nice about this middle layer is that patterns offer

reuse in a way that is less risky than frameworks. Building a

framework is high-risk and a significant investment. Patterns

let you reuse design ideas and concepts independently of con-

crete code. „


35 Software Design Principles / Extensibility

you’re ready to rewrite it from scratch because now you under-

stand many aspects of the problem much better. You have also

grown professionally, and your own code now looks like crap.

Something beyond your control has changed. This is why so

many dev teams pivot from their original ideas into something

new. Everyone who relied on Flash in an online application

has been reworking or migrating their code as browser after

browser drops support for Flash.

The third reason is that the goalposts move. Your client was

delighted with the current version of the application, but now

sees eleven “little” changes he’d like so it can do other things

he never mentioned in the original planning sessions. These

aren’t frivolous changes: your excellent first version has shown

him that even more is possible.

There’s a bright side: if someone asks you to change

something in your app, that means someone still cares

about it.

That’s why all seasoned developers try to provide for possible

future changes when designing an application’s architecture.

36 Software Design Principles / Extensibility

Design Principles
What is good software design? How would you measure it?

What practices would you need to follow to achieve it? How

can you make your architecture flexible, stable and easy to

understand?

These are the great questions; but, unfortunately, the answers

are different depending on the type of application you’re build-

ing. Nevertheless, there are several universal principles of

software design that might help you answer these questions

for your own project. Most of the design patterns listed in this

book are based on these principles.

37 Design Principles

Encapsulate What Varies

Identify the aspects of your application that vary and

separate them from what stays the same.

The main goal of this principle is to minimize the effect caused

by changes.

Imagine that your program is a ship, and changes are hideous

mines that linger under water. Struck by the mine, the

ship sinks.

Knowing this, you can divide the ship’s hull into independent

compartments that can be safely sealed to limit damage to a

single compartment. Now, if the ship hits a mine, the ship as a

whole remains afloat.

In the same way, you can isolate the parts of the program that

vary in independent modules, protecting the rest of the code

from adverse effects. As a result, you spend less time getting

the program back into working shape, implementing and test-

ing the changes. The less time you spend making changes, the

more time you have for implementing features.

38 Design Principles / Encapsulate What Varies

Encapsulation on a method level

Say you’re making an e-commerce website. Somewhere in your

code, there’s a getOrderTotal method that calculates a grand

total for the order, including taxes.

We can anticipate that tax-related code might need to change

in the future. The tax rate depends on the country, state or

even city where the customer resides, and the actual formu-

la may change over time due to new laws or regulations. As a

result, you’ll need to change the getOrderTotal method quite

often. But even the method’s name suggests that it doesn’t

care about how the tax is calculated.

BEFORE: tax calculation code is mixed with the rest of the method’s code.

You can extract the tax calculation logic into a separate

method, hiding it from the original method.

methodmethod getOrderTotal(order) isis1

total = 02

foreachforeach item in order.lineItems3

total += item.price * item.quantity4

5

ifif (order.country == "US")6

total += total * 0.07 // US sales tax7

elseelse ifif (order.country == "EU"):8

total += total * 0.20 // European VAT9

10

returnreturn total11

39 Design Principles / Encapsulate What Varies

AFTER: you can get the tax rate by calling a designated method.

Tax-related changes become isolated inside a single method.

Moreover, if the tax calculation logic becomes too complicat-

ed, it’s now easier to move it to a separate class.

Encapsulation on a class level

Over time you might add more and more responsibilities to a

method which used to do a simple thing. These added behav-

iors often come with their own helper fields and methods that

eventually blur the primary responsibility of the containing

class. Extracting everything to a new class might make things

much more clear and simple.

methodmethod getOrderTotal(order) isis1

total = 02

foreachforeach item in order.lineItems3

total += item.price * item.quantity4

5

total += total * getTaxRate(order.country)6

7

returnreturn total8

9

methodmethod getTaxRate(country) isis10

ifif (country == "US")11

returnreturn 0.07 // US sales tax12

elseelse ifif (country == "EU")13

returnreturn 0.20 // European VAT14

elseelse15

returnreturn 016

40 Design Principles / Encapsulate What Varies

BEFORE: calculating tax in Order class.

Objects of the Order class delegate all tax-related work to a

special object that does just that.

AFTER: tax calculation is hidden from the Order class.

41 Design Principles / Encapsulate What Varies

29 pages

from the full book are omitted in the demo version

CATALOG OF
DESIGN PATTERNS

Creational Design Patterns
Creational patterns provide various object creation mecha-

nisms, which increase flexibility and reuse of existing code.

Factory
Method

Provides an interface for creating objects in a superclass, but

allows subclasses to alter the type of objects that will be created.

Abstract
Factory

Lets you produce families of related objects without specifying

their concrete classes.

72 Creational Design Patterns

Builder
Lets you construct complex objects step by step. The pattern

allows you to produce different types and representations of an

object using the same construction code.

Prototype
Lets you copy existing objects without making your code depen-

dent on their classes.

Singleton
Lets you ensure that a class has only one instance, while provid-

ing a global access point to this instance.

73 Creational Design Patterns

FACTORY METHOD
Also known as: Virtual Constructor

Factory Method is a creational design pattern that provides

an interface for creating objects in a superclass, but allows

subclasses to alter the type of objects that will be created.

74 Creational Design Patterns / Factory Method

Problem

Imagine that you’re creating a logistics management applica-

tion. The first version of your app can only handle transporta-

tion by trucks, so the bulk of your code lives inside the Truck

class.

After a while, your app becomes pretty popular. Each day you

receive dozens of requests from sea transportation companies

to incorporate sea logistics into the app.

Adding a new class to the program isn’t that simple if the rest of the code

is already coupled to existing classes.

Great news, right? But how about the code? At present, most of

your code is coupled to the Truck class. Adding Ships into

the app would require making changes to the entire codebase.

Moreover, if later you decide to add another type of transporta-

tion to the app, you will probably need to make all of these

changes again.



75 Creational Design Patterns / Factory Method

As a result, you will end up with pretty nasty code, riddled with

conditionals that switch the app’s behavior depending on the

class of transportation objects.

Solution

The Factory Method pattern suggests that you replace direct

object construction calls (using the new operator) with calls

to a special factory method. Don’t worry: the objects are still

created via the new operator, but it’s being called from within

the factory method. Objects returned by a factory method are

often referred to as products.

Subclasses can alter the class of objects being returned by the

factory method.

At first glance, this change may look pointless: we just moved

the constructor call from one part of the program to anoth-

er. However, consider this: now you can override the factory

method in a subclass and change the class of products being

created by the method.



76 Creational Design Patterns / Factory Method

There’s a slight limitation though: subclasses may return dif-

ferent types of products only if these products have a common

base class or interface. Also, the factory method in the base

class should have its return type declared as this interface.

All products must follow the same interface.

For example, both Truck and Ship classes should imple-

ment the Transport interface, which declares a method

called deliver . Each class implements this method differ-

ently: trucks deliver cargo by land, ships deliver cargo by sea.

The factory method in the RoadLogistics class returns truck

objects, whereas the factory method in the SeaLogistics

class returns ships.

The code that uses the factory method (often called the client

code) doesn’t see a difference between the actual products

returned by various subclasses. The client treats all the prod-

ucts as abstract Transport .

77 Creational Design Patterns / Factory Method

As long as all product classes implement a common interface, you can

pass their objects to the client code without breaking it.

The client knows that all transport objects are supposed to

have the deliver method, but exactly how it works isn’t

important to the client.

Structure

78 Creational Design Patterns / Factory Method

1. The Product declares the interface, which is common to all

objects that can be produced by the creator and its subclasses.

2. Concrete Products are different implementations of the prod-

uct interface.

3. The Creator class declares the factory method that returns

new product objects. It’s important that the return type of this

method matches the product interface.

You can declare the factory method as abstract to force all sub-

classes to implement their own versions of the method. As an

alternative, the base factory method can return some default

product type.

Note, despite its name, product creation is not the primary

responsibility of the creator. Usually, the creator class already

has some core business logic related to products. The factory

method helps to decouple this logic from the concrete prod-

uct classes. Here is an analogy: a large software development

company can have a training department for programmers.

However, the primary function of the company as a whole is

still writing code, not producing programmers.

4. Concrete Creators override the base factory method so it

returns a different type of product.

79 Creational Design Patterns / Factory Method

Note that the factory method doesn’t have to create new

instances all the time. It can also return existing objects from

a cache, an object pool, or another source.

Pseudocode

This example illustrates how the Factory Method can be used

for creating cross-platform UI elements without coupling the

client code to concrete UI classes.

The base dialog class uses different UI elements to render its

window. Under various operating systems, these elements may

look a little bit different, but they should still behave consis-

tently. A button in Windows is still a button in Linux.

The cross-platform dialog example.



80 Creational Design Patterns / Factory Method

When the factory method comes into play, you don’t need to

rewrite the logic of the dialog for each operating system. If

we declare a factory method that produces buttons inside the

base dialog class, we can later create a dialog subclass that

returns Windows-styled buttons from the factory method. The

subclass then inherits most of the dialog’s code from the base

class, but, thanks to the factory method, can render Windows-

looking buttons on the screen.

For this pattern to work, the base dialog class must work with

abstract buttons: a base class or an interface that all concrete

buttons follow. This way the dialog’s code remains functional,

whichever type of buttons it works with.

Of course, you can apply this approach to other UI elements as

well. However, with each new factory method you add to the

dialog, you get closer to the Abstract Factory pattern. Fear not,

we’ll talk about this pattern later.

// The creator class declares the factory method that must1

// return an object of a product class. The creator's subclasses2

// usually provide the implementation of this method.3

classclass DialogDialog isis4

// The creator may also provide some default implementation5

// of the factory method.6

abstractabstract methodmethod createButton():Button7

8

// Note that, despite its name, the creator's primary9

// responsibility isn't creating products. It usually10

81 Creational Design Patterns / Factory Method

// contains some core business logic that relies on product11

// objects returned by the factory method. Subclasses can12

// indirectly change that business logic by overriding the13

// factory method and returning a different type of product14

// from it.15

methodmethod render() isis16

// Call the factory method to create a product object.17

Button okButton = createButton()18

// Now use the product.19

okButton.onClick(closeDialog)20

okButton.render()21

22

23

// Concrete creators override the factory method to change the24

// resulting product's type.25

classclass WindowsDialogWindowsDialog extendsextends Dialog isis26

methodmethod createButton():Button isis27

returnreturn newnew WindowsButton()28

29

classclass WebDialogWebDialog extendsextends Dialog isis30

methodmethod createButton():Button isis31

returnreturn newnew HTMLButton()32

33

34

// The product interface declares the operations that all35

// concrete products must implement.36

interfaceinterface ButtonButton isis37

methodmethod render()38

methodmethod onClick(f)39

40

// Concrete products provide various implementations of the41

// product interface.42

82 Creational Design Patterns / Factory Method

classclass WindowsButtonWindowsButton implementsimplements Button isis43

methodmethod render(a, b) isis44

// Render a button in Windows style.45

methodmethod onClick(f) isis46

// Bind a native OS click event.47

48

classclass HTMLButtonHTMLButton implementsimplements Button isis49

methodmethod render(a, b) isis50

// Return an HTML representation of a button.51

methodmethod onClick(f) isis52

// Bind a web browser click event.53

54

55

classclass ApplicationApplication isis56

fieldfield dialog: Dialog57

58

// The application picks a creator's type depending on the59

// current configuration or environment settings.60

methodmethod initialize() isis61

config = readApplicationConfigFile()62

63

ifif (config.OS == "Windows") thenthen64

dialog = newnew WindowsDialog()65

elseelse ifif (config.OS == "Web") thenthen66

dialog = newnew WebDialog()67

elseelse68

throwthrow newnew Exception("Error! Unknown operating system.")69

70

// The client code works with an instance of a concrete71

// creator, albeit through its base interface. As long as72

// the client keeps working with the creator via the base73

// interface, you can pass it any creator's subclass.74

83 Creational Design Patterns / Factory Method

Applicability

Use the Factory Method when you don’t know beforehand the

exact types and dependencies of the objects your code should

work with.

The Factory Method separates product construction code from

the code that actually uses the product. Therefore it’s easier to

extend the product construction code independently from the

rest of the code.

For example, to add a new product type to the app, you’ll only

need to create a new creator subclass and override the factory

method in it.

Use the Factory Method when you want to provide users of

your library or framework with a way to extend its internal

components.

Inheritance is probably the easiest way to extend the default

behavior of a library or framework. But how would the frame-

work recognize that your subclass should be used instead of a

standard component?

methodmethod main() isis75

thisthis.initialize()76

dialog.render()77











84 Creational Design Patterns / Factory Method

The solution is to reduce the code that constructs components

across the framework into a single factory method and let any-

one override this method in addition to extending the compo-

nent itself.

Let’s see how that would work. Imagine that you write an

app using an open source UI framework. Your app should

have round buttons, but the framework only provides square

ones. You extend the standard Button class with a glorious

RoundButton subclass. But now you need to tell the main

UIFramework class to use the new button subclass instead of

a default one.

To achieve this, you create a subclass UIWithRoundButtons

from a base framework class and override its createButton

method. While this method returns Button objects in the

base class, you make your subclass return RoundButton

objects. Now use the UIWithRoundButtons class instead of

UIFramework . And that’s about it!

Use the Factory Method when you want to save system

resources by reusing existing objects instead of rebuilding

them each time.

You often experience this need when dealing with large,

resource-intensive objects such as database connections, file

systems, and network resources.





85 Creational Design Patterns / Factory Method

Let’s think about what has to be done to reuse an existing

object:

1. First, you need to create some storage to keep track of all of

the created objects.

2. When someone requests an object, the program should look

for a free object inside that pool.

3. … and then return it to the client code.

4. If there are no free objects, the program should create a new

one (and add it to the pool).

That’s a lot of code! And it must all be put into a single place

so that you don’t pollute the program with duplicate code.

Probably the most obvious and convenient place where this

code could be placed is the constructor of the class whose

objects we’re trying to reuse. However, a constructor must

always return new objects by definition. It can’t return existing

instances.

Therefore, you need to have a regular method capable of

creating new objects as well as reusing existing ones. That

sounds very much like a factory method.

How to Implement

1. Make all products follow the same interface. This interface

should declare methods that make sense in every product.



86 Creational Design Patterns / Factory Method

2. Add an empty factory method inside the creator class. The

return type of the method should match the common product

interface.

3. In the creator’s code find all references to product constructors.

One by one, replace them with calls to the factory method,

while extracting the product creation code into the factory

method.

You might need to add a temporary parameter to the factory

method to control the type of returned product.

At this point, the code of the factory method may look pretty

ugly. It may have a large switch operator that picks which

product class to instantiate. But don’t worry, we’ll fix it soon

enough.

4. Now, create a set of creator subclasses for each type of prod-

uct listed in the factory method. Override the factory method

in the subclasses and extract the appropriate bits of construc-

tion code from the base method.

5. If there are too many product types and it doesn’t make sense

to create subclasses for all of them, you can reuse the control

parameter from the base class in subclasses.

For instance, imagine that you have the following hierarchy

of classes: the base Mail class with a couple of subclass-

es: AirMail and GroundMail ; the Transport classes are

87 Creational Design Patterns / Factory Method

Plane , Truck and Train . While the AirMail class only

uses Plane objects, GroundMail may work with both

Truck and Train objects. You can create a new subclass

(say TrainMail) to handle both cases, but there’s another

option. The client code can pass an argument to the factory

method of the GroundMail class to control which product it

wants to receive.

6. If, after all of the extractions, the base factory method has

become empty, you can make it abstract. If there’s something

left, you can make it a default behavior of the method.

Pros and Cons

You avoid tight coupling between the creator and the concrete

products.

Single Responsibility Principle. You can move the product cre-

ation code into one place in the program, making the code eas-

ier to support.

Open/Closed Principle. You can introduce new types of products

into the program without breaking existing client code.

The code may become more complicated since you need to

introduce a lot of new subclasses to implement the pattern.

The best case scenario is when you’re introducing the pattern

into an existing hierarchy of creator classes.











88 Creational Design Patterns / Factory Method

Relations with Other Patterns

• Many designs start by using Factory Method (less complicat-

ed and more customizable via subclasses) and evolve toward

Abstract Factory, Prototype, or Builder (more flexible, but more

complicated).

• Abstract Factory classes are often based on a set of Facto-

ry Methods, but you can also use Prototype to compose the

methods on these classes.

• You can use Factory Method along with Iterator to let collec-

tion subclasses return different types of iterators that are com-

patible with the collections.

• Prototype isn’t based on inheritance, so it doesn’t have its

drawbacks. On the other hand, Prototype requires a complicat-

ed initialization of the cloned object. Factory Method is based

on inheritance but doesn’t require an initialization step.

• Factory Method is a specialization of Template Method. At the

same time, a Factory Method may serve as a step in a large Tem-

plate Method.



89 Creational Design Patterns / Factory Method

320 pages

from the full book are omitted in the demo version

