O Visitor é um padrão de projeto comportamental que permite adicionar novos comportamentos à hierarquia de classes existente sem alterar nenhum código existente.
Leia por que os Visitors não podem ser simplesmente substituídos pela sobrecarga de método em nosso artigo Visitor e Double Dispatch .
Deserialization
A real-world example of the Visitor pattern is serde serialization framework and its deserialization model (see Serde data model ).
Visitor
should be implemented for a deserializable type.
Visitor
is passed to a Deserializer
(an “Element” in terms of the Visitor Pattern), which accepts and drives the Visitor
in order to construct a desired type.
Let’s reproduce this deserializing model in our example.
visitor.rs
use crate::{TwoValuesArray, TwoValuesStruct};
/// Visitor can visit one type, do conversions, and output another type.
///
/// It's not like all visitors must return a new type, it's just an example
/// that demonstrates the technique.
pub trait Visitor {
type Value;
/// Visits a vector of integers and outputs a desired type.
fn visit_vec(&self, v: Vec<i32>) -> Self::Value;
}
/// Visitor implementation for a struct of two values.
impl Visitor for TwoValuesStruct {
type Value = TwoValuesStruct;
fn visit_vec(&self, v: Vec<i32>) -> Self::Value {
TwoValuesStruct { a: v[0], b: v[1] }
}
}
/// Visitor implementation for a struct of values array.
impl Visitor for TwoValuesArray {
type Value = TwoValuesArray;
fn visit_vec(&self, v: Vec<i32>) -> Self::Value {
let mut ab = [0i32; 2];
ab[0] = v[0];
ab[1] = v[1];
TwoValuesArray { ab }
}
}
main.rs
#![allow(unused)]
mod visitor;
use visitor::Visitor;
/// A struct of two integer values.
///
/// It's going to be an output of `Visitor` trait which is defined for the type
/// in `visitor.rs`.
#[derive(Default, Debug)]
pub struct TwoValuesStruct {
a: i32,
b: i32,
}
/// A struct of values array.
///
/// It's going to be an output of `Visitor` trait which is defined for the type
/// in `visitor.rs`.
#[derive(Default, Debug)]
pub struct TwoValuesArray {
ab: [i32; 2],
}
/// `Deserializer` trait defines methods that can parse either a string or
/// a vector, it accepts a visitor which knows how to construct a new object
/// of a desired type (in our case, `TwoValuesArray` and `TwoValuesStruct`).
trait Deserializer<V: Visitor> {
fn create(visitor: V) -> Self;
fn parse_str(&self, input: &str) -> Result<V::Value, &'static str> {
Err("parse_str is unimplemented")
}
fn parse_vec(&self, input: Vec<i32>) -> Result<V::Value, &'static str> {
Err("parse_vec is unimplemented")
}
}
struct StringDeserializer<V: Visitor> {
visitor: V,
}
impl<V: Visitor> Deserializer<V> for StringDeserializer<V> {
fn create(visitor: V) -> Self {
Self { visitor }
}
fn parse_str(&self, input: &str) -> Result<V::Value, &'static str> {
// In this case, in order to apply a visitor, a deserializer should do
// some preparation. The visitor does its stuff, but it doesn't do everything.
let input_vec = input
.split_ascii_whitespace()
.map(|x| x.parse().unwrap())
.collect();
Ok(self.visitor.visit_vec(input_vec))
}
}
struct VecDeserializer<V: Visitor> {
visitor: V,
}
impl<V: Visitor> Deserializer<V> for VecDeserializer<V> {
fn create(visitor: V) -> Self {
Self { visitor }
}
fn parse_vec(&self, input: Vec<i32>) -> Result<V::Value, &'static str> {
Ok(self.visitor.visit_vec(input))
}
}
fn main() {
let deserializer = StringDeserializer::create(TwoValuesStruct::default());
let result = deserializer.parse_str("123 456");
println!("{:?}", result);
let deserializer = VecDeserializer::create(TwoValuesStruct::default());
let result = deserializer.parse_vec(vec![123, 456]);
println!("{:?}", result);
let deserializer = VecDeserializer::create(TwoValuesArray::default());
let result = deserializer.parse_vec(vec![123, 456]);
println!("{:?}", result);
println!(
"Error: {}",
deserializer.parse_str("123 456").err().unwrap()
)
}
Output
Ok(TwoValuesStruct { a: 123, b: 456 })
Ok(TwoValuesStruct { a: 123, b: 456 })
Ok(TwoValuesArray { ab: [123, 456] })
Error: parse_str unimplemented