La Stratégie est un patron de conception comportemental qui transforme un ensemble de comportements en objets, et les rend interchangeables à l’intérieur de l’objet du contexte original.
L’objet original, que l’on appelle contexte, garde une référence vers un objet stratégie et lui délègue l’exécution du comportement. Les autres objets doivent remplacer l’objet stratégie associé afin de modifier la manière dont le contexte fonctionne.
Exemple conceptuel
Dans cet exemple, nous allons voir la structure de la Stratégie et répondre aux questions suivantes :
Que contiennent les classes ?
Quels rôles jouent-elles ?
Comment les éléments du patron sont-ils reliés ?
Après avoir étudié la structure du patron, vous pourrez plus facilement comprendre l’exemple suivant qui est basé sur un cas d’utilisation réel en Swift.
Example.swift: Exemple conceptuel
import XCTest
/// The Context defines the interface of interest to clients.
class Context {
/// The Context maintains a reference to one of the Strategy objects. The
/// Context does not know the concrete class of a strategy. It should work
/// with all strategies via the Strategy interface.
private var strategy: Strategy
/// Usually, the Context accepts a strategy through the constructor, but
/// also provides a setter to change it at runtime.
init(strategy: Strategy) {
self.strategy = strategy
}
/// Usually, the Context allows replacing a Strategy object at runtime.
func update(strategy: Strategy) {
self.strategy = strategy
}
/// The Context delegates some work to the Strategy object instead of
/// implementing multiple versions of the algorithm on its own.
func doSomeBusinessLogic() {
print("Context: Sorting data using the strategy (not sure how it'll do it)\n")
let result = strategy.doAlgorithm(["a", "b", "c", "d", "e"])
print(result.joined(separator: ","))
}
}
/// The Strategy interface declares operations common to all supported versions
/// of some algorithm.
///
/// The Context uses this interface to call the algorithm defined by Concrete
/// Strategies.
protocol Strategy {
func doAlgorithm<T: Comparable>(_ data: [T]) -> [T]
}
/// Concrete Strategies implement the algorithm while following the base
/// Strategy interface. The interface makes them interchangeable in the Context.
class ConcreteStrategyA: Strategy {
func doAlgorithm<T: Comparable>(_ data: [T]) -> [T] {
return data.sorted()
}
}
class ConcreteStrategyB: Strategy {
func doAlgorithm<T: Comparable>(_ data: [T]) -> [T] {
return data.sorted(by: >)
}
}
/// Let's see how it all works together.
class StrategyConceptual: XCTestCase {
func test() {
/// The client code picks a concrete strategy and passes it to the
/// context. The client should be aware of the differences between
/// strategies in order to make the right choice.
let context = Context(strategy: ConcreteStrategyA())
print("Client: Strategy is set to normal sorting.\n")
context.doSomeBusinessLogic()
print("\nClient: Strategy is set to reverse sorting.\n")
context.update(strategy: ConcreteStrategyB())
context.doSomeBusinessLogic()
}
}
Output.txt: Résultat de l’exécution
Client: Strategy is set to normal sorting.
Context: Sorting data using the strategy (not sure how it'll do it)
a,b,c,d,e
Client: Strategy is set to reverse sorting.
Context: Sorting data using the strategy (not sure how it'll do it)
e,d,c,b,a
Analogie du monde réel
Example.swift: Analogie du monde réel
import XCTest
class StrategyRealWorld: XCTestCase {
/// This example shows a simple implementation of a list controller that is
/// able to display models from different data sources:
///
/// (MemoryStorage, CoreDataStorage, RealmStorage)
func test() {
let controller = ListController()
let memoryStorage = MemoryStorage<User>()
memoryStorage.add(usersFromNetwork())
clientCode(use: controller, with: memoryStorage)
clientCode(use: controller, with: CoreDataStorage())
clientCode(use: controller, with: RealmStorage())
}
func clientCode(use controller: ListController, with dataSource: DataSource) {
controller.update(dataSource: dataSource)
controller.displayModels()
}
private func usersFromNetwork() -> [User] {
let firstUser = User(id: 1, username: "username1")
let secondUser = User(id: 2, username: "username2")
return [firstUser, secondUser]
}
}
class ListController {
private var dataSource: DataSource?
func update(dataSource: DataSource) {
/// ... resest current states ...
self.dataSource = dataSource
}
func displayModels() {
guard let dataSource = dataSource else { return }
let models = dataSource.loadModels() as [User]
/// Bind models to cells of a list view...
print("\nListController: Displaying models...")
models.forEach({ print($0) })
}
}
protocol DataSource {
func loadModels<T: DomainModel>() -> [T]
}
class MemoryStorage<Model>: DataSource {
private lazy var items = [Model]()
func add(_ items: [Model]) {
self.items.append(contentsOf: items)
}
func loadModels<T: DomainModel>() -> [T] {
guard T.self == User.self else { return [] }
return items as! [T]
}
}
class CoreDataStorage: DataSource {
func loadModels<T: DomainModel>() -> [T] {
guard T.self == User.self else { return [] }
let firstUser = User(id: 3, username: "username3")
let secondUser = User(id: 4, username: "username4")
return [firstUser, secondUser] as! [T]
}
}
class RealmStorage: DataSource {
func loadModels<T: DomainModel>() -> [T] {
guard T.self == User.self else { return [] }
let firstUser = User(id: 5, username: "username5")
let secondUser = User(id: 6, username: "username6")
return [firstUser, secondUser] as! [T]
}
}
protocol DomainModel {
var id: Int { get }
}
struct User: DomainModel {
var id: Int
var username: String
}
Output.txt: Résultat de l’exécution
ListController: Displaying models...
User(id: 1, username: "username1")
User(id: 2, username: "username2")
ListController: Displaying models...
User(id: 3, username: "username3")
User(id: 4, username: "username4")
ListController: Displaying models...
User(id: 5, username: "username5")
User(id: 6, username: "username6")