Singleton es un patrón de diseño creacional que garantiza que tan solo exista un objeto de su tipo y proporciona un único punto de acceso a él para cualquier otro código.
El patrón tiene prácticamente los mismos pros y contras que las variables globales. Aunque son muy útiles, rompen la modularidad de tu código.
No se puede utilizar una clase que dependa del Singleton en otro contexto. Tendrás que llevar también la clase Singleton. La mayoría de las veces, esta limitación aparece durante la creación de pruebas de unidad.
Singleton ingenuo
Es muy fácil implementar un Singleton descuidado. Tan solo necesitas esconder el constructor e implementar un método de creación estático.
La misma clase se comporta de forma incorrecta en un entorno multihilo. Los múltiples hilos pueden llamar al método de creación de forma simultánea y obtener varias instancias de la clase Singleton.
main.cc: Ejemplo conceptual
/**
* The Singleton class defines the `GetInstance` method that serves as an
* alternative to constructor and lets clients access the same instance of this
* class over and over.
*/
class Singleton
{
/**
* The Singleton's constructor should always be private to prevent direct
* construction calls with the `new` operator.
*/
protected:
Singleton(const std::string value): value_(value)
{
}
static Singleton* singleton_;
std::string value_;
public:
/**
* Singletons should not be cloneable.
*/
Singleton(Singleton &other) = delete;
/**
* Singletons should not be assignable.
*/
void operator=(const Singleton &) = delete;
/**
* This is the static method that controls the access to the singleton
* instance. On the first run, it creates a singleton object and places it
* into the static field. On subsequent runs, it returns the client existing
* object stored in the static field.
*/
static Singleton *GetInstance(const std::string& value);
/**
* Finally, any singleton should define some business logic, which can be
* executed on its instance.
*/
void SomeBusinessLogic()
{
// ...
}
std::string value() const{
return value_;
}
};
Singleton* Singleton::singleton_= nullptr;;
/**
* Static methods should be defined outside the class.
*/
Singleton *Singleton::GetInstance(const std::string& value)
{
/**
* This is a safer way to create an instance. instance = new Singleton is
* dangeruous in case two instance threads wants to access at the same time
*/
if(singleton_==nullptr){
singleton_ = new Singleton(value);
}
return singleton_;
}
void ThreadFoo(){
// Following code emulates slow initialization.
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
Singleton* singleton = Singleton::GetInstance("FOO");
std::cout << singleton->value() << "\n";
}
void ThreadBar(){
// Following code emulates slow initialization.
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
Singleton* singleton = Singleton::GetInstance("BAR");
std::cout << singleton->value() << "\n";
}
int main()
{
std::cout <<"If you see the same value, then singleton was reused (yay!\n" <<
"If you see different values, then 2 singletons were created (booo!!)\n\n" <<
"RESULT:\n";
std::thread t1(ThreadFoo);
std::thread t2(ThreadBar);
t1.join();
t2.join();
return 0;
}
Output.txt: Resultado de la ejecución
If you see the same value, then singleton was reused (yay!
If you see different values, then 2 singletons were created (booo!!)
RESULT:
BAR
FOO
Singleton con seguridad en los hilos
Para arreglar el problema, debes sincronizar hilos durante la primera creación del objeto Singleton.
main.cc: Ejemplo conceptual
/**
* The Singleton class defines the `GetInstance` method that serves as an
* alternative to constructor and lets clients access the same instance of this
* class over and over.
*/
class Singleton
{
/**
* The Singleton's constructor/destructor should always be private to
* prevent direct construction/desctruction calls with the `new`/`delete`
* operator.
*/
private:
static Singleton * pinstance_;
static std::mutex mutex_;
protected:
Singleton(const std::string value): value_(value)
{
}
~Singleton() {}
std::string value_;
public:
/**
* Singletons should not be cloneable.
*/
Singleton(Singleton &other) = delete;
/**
* Singletons should not be assignable.
*/
void operator=(const Singleton &) = delete;
/**
* This is the static method that controls the access to the singleton
* instance. On the first run, it creates a singleton object and places it
* into the static field. On subsequent runs, it returns the client existing
* object stored in the static field.
*/
static Singleton *GetInstance(const std::string& value);
/**
* Finally, any singleton should define some business logic, which can be
* executed on its instance.
*/
void SomeBusinessLogic()
{
// ...
}
std::string value() const{
return value_;
}
};
/**
* Static methods should be defined outside the class.
*/
Singleton* Singleton::pinstance_{nullptr};
std::mutex Singleton::mutex_;
/**
* The first time we call GetInstance we will lock the storage location
* and then we make sure again that the variable is null and then we
* set the value. RU:
*/
Singleton *Singleton::GetInstance(const std::string& value)
{
std::lock_guard<std::mutex> lock(mutex_);
if (pinstance_ == nullptr)
{
pinstance_ = new Singleton(value);
}
return pinstance_;
}
void ThreadFoo(){
// Following code emulates slow initialization.
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
Singleton* singleton = Singleton::GetInstance("FOO");
std::cout << singleton->value() << "\n";
}
void ThreadBar(){
// Following code emulates slow initialization.
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
Singleton* singleton = Singleton::GetInstance("BAR");
std::cout << singleton->value() << "\n";
}
int main()
{
std::cout <<"If you see the same value, then singleton was reused (yay!\n" <<
"If you see different values, then 2 singletons were created (booo!!)\n\n" <<
"RESULT:\n";
std::thread t1(ThreadFoo);
std::thread t2(ThreadBar);
t1.join();
t2.join();
return 0;
}
Output.txt: Resultado de la ejecución
If you see the same value, then singleton was reused (yay!
If you see different values, then 2 singletons were created (booo!!)
RESULT:
FOO
FOO