봄맞이 세일
복합체

C++로 작성된 복합체

복합체 패턴은 객체들을 트리 구조들로 구성한 후, 이러한 구조들을 개별 객체들처럼 다룰 수 있도록 하는 구조 패턴입니다.

복합체는 트리 구조를 생성해야 하는 대부분 문제에 대해 인기 있는 해결책입니다. 전체 트리 구조에 대해 재귀적으로 메서드들을 실행하고 결과를 요약하는 기능은 복합체의 훌륭한 기능 중 하나입니다.

복잡도:

인기도:

사용 예시들: 복합체 패턴은 C++ 코드에서 매우 일반적입니다. 사용자 인터페이스 컴포넌트의 계층구조나 그래프와 함께 작동하는 코드를 나타내는 데 자주 사용됩니다.

식별: 만약 코드에 객체 트리가 있고 트리의 각 객체가 같은 클래스 계층구조의 일부면 이는 복합체 패턴일 가능성이 큽니다. 이러한 클래스들의 메서드들이 작업을 트리의 자식 객체에 위임하고 이러한 위임을 계층구조의 기초 클래스/인터페이스를 통해 수행하면 이는 확실히 복합체입니다.

개념적인 예시

이 예시는 복합체 패턴의 구조를 보여주고 다음 질문에 중점을 둡니다:

  • 패턴은 어떤 클래스들로 구성되어 있나요?
  • 이 클래스들은 어떤 역할을 하나요?
  • 패턴의 요소들은 어떻게 서로 연관되어 있나요?

main.cc: 개념적인 예시

#include <algorithm>
#include <iostream>
#include <list>
#include <string>
/**
 * The base Component class declares common operations for both simple and
 * complex objects of a composition.
 */
class Component {
  /**
   * @var Component
   */
 protected:
  Component *parent_;
  /**
   * Optionally, the base Component can declare an interface for setting and
   * accessing a parent of the component in a tree structure. It can also
   * provide some default implementation for these methods.
   */
 public:
  virtual ~Component() {}
  void SetParent(Component *parent) {
    this->parent_ = parent;
  }
  Component *GetParent() const {
    return this->parent_;
  }
  /**
   * In some cases, it would be beneficial to define the child-management
   * operations right in the base Component class. This way, you won't need to
   * expose any concrete component classes to the client code, even during the
   * object tree assembly. The downside is that these methods will be empty for
   * the leaf-level components.
   */
  virtual void Add(Component *component) {}
  virtual void Remove(Component *component) {}
  /**
   * You can provide a method that lets the client code figure out whether a
   * component can bear children.
   */
  virtual bool IsComposite() const {
    return false;
  }
  /**
   * The base Component may implement some default behavior or leave it to
   * concrete classes (by declaring the method containing the behavior as
   * "abstract").
   */
  virtual std::string Operation() const = 0;
};
/**
 * The Leaf class represents the end objects of a composition. A leaf can't have
 * any children.
 *
 * Usually, it's the Leaf objects that do the actual work, whereas Composite
 * objects only delegate to their sub-components.
 */
class Leaf : public Component {
 public:
  std::string Operation() const override {
    return "Leaf";
  }
};
/**
 * The Composite class represents the complex components that may have children.
 * Usually, the Composite objects delegate the actual work to their children and
 * then "sum-up" the result.
 */
class Composite : public Component {
  /**
   * @var \SplObjectStorage
   */
 protected:
  std::list<Component *> children_;

 public:
  /**
   * A composite object can add or remove other components (both simple or
   * complex) to or from its child list.
   */
  void Add(Component *component) override {
    this->children_.push_back(component);
    component->SetParent(this);
  }
  /**
   * Have in mind that this method removes the pointer to the list but doesn't
   * frees the
   *     memory, you should do it manually or better use smart pointers.
   */
  void Remove(Component *component) override {
    children_.remove(component);
    component->SetParent(nullptr);
  }
  bool IsComposite() const override {
    return true;
  }
  /**
   * The Composite executes its primary logic in a particular way. It traverses
   * recursively through all its children, collecting and summing their results.
   * Since the composite's children pass these calls to their children and so
   * forth, the whole object tree is traversed as a result.
   */
  std::string Operation() const override {
    std::string result;
    for (const Component *c : children_) {
      if (c == children_.back()) {
        result += c->Operation();
      } else {
        result += c->Operation() + "+";
      }
    }
    return "Branch(" + result + ")";
  }
};
/**
 * The client code works with all of the components via the base interface.
 */
void ClientCode(Component *component) {
  // ...
  std::cout << "RESULT: " << component->Operation();
  // ...
}

/**
 * Thanks to the fact that the child-management operations are declared in the
 * base Component class, the client code can work with any component, simple or
 * complex, without depending on their concrete classes.
 */
void ClientCode2(Component *component1, Component *component2) {
  // ...
  if (component1->IsComposite()) {
    component1->Add(component2);
  }
  std::cout << "RESULT: " << component1->Operation();
  // ...
}

/**
 * This way the client code can support the simple leaf components...
 */

int main() {
  Component *simple = new Leaf;
  std::cout << "Client: I've got a simple component:\n";
  ClientCode(simple);
  std::cout << "\n\n";
  /**
   * ...as well as the complex composites.
   */

  Component *tree = new Composite;
  Component *branch1 = new Composite;

  Component *leaf_1 = new Leaf;
  Component *leaf_2 = new Leaf;
  Component *leaf_3 = new Leaf;
  branch1->Add(leaf_1);
  branch1->Add(leaf_2);
  Component *branch2 = new Composite;
  branch2->Add(leaf_3);
  tree->Add(branch1);
  tree->Add(branch2);
  std::cout << "Client: Now I've got a composite tree:\n";
  ClientCode(tree);
  std::cout << "\n\n";

  std::cout << "Client: I don't need to check the components classes even when managing the tree:\n";
  ClientCode2(tree, simple);
  std::cout << "\n";

  delete simple;
  delete tree;
  delete branch1;
  delete branch2;
  delete leaf_1;
  delete leaf_2;
  delete leaf_3;

  return 0;
}

Output.txt: 실행 결과

Client: I've got a simple component:
RESULT: Leaf

Client: Now I've got a composite tree:
RESULT: Branch(Branch(Leaf+Leaf)+Branch(Leaf))

Client: I don't need to check the components classes even when managing the tree:
RESULT: Branch(Branch(Leaf+Leaf)+Branch(Leaf)+Leaf)

다른 언어로 작성된 복합체

C#으로 작성된 복합체 Go로 작성된 복합체 자바로 작성된 복합체 PHP로 작성된 복합체 파이썬으로 작성된 복합체 루비로 작성된 복합체 러스트로 작성된 복합체 스위프트로 작성된 복합체 타입스크립트로 작성된 복합체