겨울 세일!
복합체

파이썬으로 작성된 복합체

복합체 패턴은 객체들을 트리 구조들로 구성한 후, 이러한 구조들을 개별 객체들처럼 다룰 수 있도록 하는 구조 패턴입니다.

복합체는 트리 구조를 생성해야 하는 대부분 문제에 대해 인기 있는 해결책입니다. 전체 트리 구조에 대해 재귀적으로 메서드들을 실행하고 결과를 요약하는 기능은 복합체의 훌륭한 기능 중 하나입니다.

복잡도:

인기도:

사용 예시들: 복합체 패턴은 파이썬 코드에서 매우 일반적입니다. 사용자 인터페이스 컴포넌트의 계층구조나 그래프와 함께 작동하는 코드를 나타내는 데 자주 사용됩니다.

식별: 만약 코드에 객체 트리가 있고 트리의 각 객체가 같은 클래스 계층구조의 일부면 이는 복합체 패턴일 가능성이 큽니다. 이러한 클래스들의 메서드들이 작업을 트리의 자식 객체에 위임하고 이러한 위임을 계층구조의 기초 클래스/인터페이스를 통해 수행하면 이는 확실히 복합체입니다.

개념적인 예시

이 예시는 복합체 패턴의 구조를 보여주고 다음 질문에 중점을 둡니다:

  • 패턴은 어떤 클래스들로 구성되어 있나요?
  • 이 클래스들은 어떤 역할을 하나요?
  • 패턴의 요소들은 어떻게 서로 연관되어 있나요?

main.py: 개념적인 예시

from __future__ import annotations
from abc import ABC, abstractmethod
from typing import List


class Component(ABC):
    """
    The base Component class declares common operations for both simple and
    complex objects of a composition.
    """

    @property
    def parent(self) -> Component:
        return self._parent

    @parent.setter
    def parent(self, parent: Component):
        """
        Optionally, the base Component can declare an interface for setting and
        accessing a parent of the component in a tree structure. It can also
        provide some default implementation for these methods.
        """

        self._parent = parent

    """
    In some cases, it would be beneficial to define the child-management
    operations right in the base Component class. This way, you won't need to
    expose any concrete component classes to the client code, even during the
    object tree assembly. The downside is that these methods will be empty for
    the leaf-level components.
    """

    def add(self, component: Component) -> None:
        pass

    def remove(self, component: Component) -> None:
        pass

    def is_composite(self) -> bool:
        """
        You can provide a method that lets the client code figure out whether a
        component can bear children.
        """

        return False

    @abstractmethod
    def operation(self) -> str:
        """
        The base Component may implement some default behavior or leave it to
        concrete classes (by declaring the method containing the behavior as
        "abstract").
        """

        pass


class Leaf(Component):
    """
    The Leaf class represents the end objects of a composition. A leaf can't
    have any children.

    Usually, it's the Leaf objects that do the actual work, whereas Composite
    objects only delegate to their sub-components.
    """

    def operation(self) -> str:
        return "Leaf"


class Composite(Component):
    """
    The Composite class represents the complex components that may have
    children. Usually, the Composite objects delegate the actual work to their
    children and then "sum-up" the result.
    """

    def __init__(self) -> None:
        self._children: List[Component] = []

    """
    A composite object can add or remove other components (both simple or
    complex) to or from its child list.
    """

    def add(self, component: Component) -> None:
        self._children.append(component)
        component.parent = self

    def remove(self, component: Component) -> None:
        self._children.remove(component)
        component.parent = None

    def is_composite(self) -> bool:
        return True

    def operation(self) -> str:
        """
        The Composite executes its primary logic in a particular way. It
        traverses recursively through all its children, collecting and summing
        their results. Since the composite's children pass these calls to their
        children and so forth, the whole object tree is traversed as a result.
        """

        results = []
        for child in self._children:
            results.append(child.operation())
        return f"Branch({'+'.join(results)})"


def client_code(component: Component) -> None:
    """
    The client code works with all of the components via the base interface.
    """

    print(f"RESULT: {component.operation()}", end="")


def client_code2(component1: Component, component2: Component) -> None:
    """
    Thanks to the fact that the child-management operations are declared in the
    base Component class, the client code can work with any component, simple or
    complex, without depending on their concrete classes.
    """

    if component1.is_composite():
        component1.add(component2)

    print(f"RESULT: {component1.operation()}", end="")


if __name__ == "__main__":
    # This way the client code can support the simple leaf components...
    simple = Leaf()
    print("Client: I've got a simple component:")
    client_code(simple)
    print("\n")

    # ...as well as the complex composites.
    tree = Composite()

    branch1 = Composite()
    branch1.add(Leaf())
    branch1.add(Leaf())

    branch2 = Composite()
    branch2.add(Leaf())

    tree.add(branch1)
    tree.add(branch2)

    print("Client: Now I've got a composite tree:")
    client_code(tree)
    print("\n")

    print("Client: I don't need to check the components classes even when managing the tree:")
    client_code2(tree, simple)

Output.txt: 실행 결과

Client: I've got a simple component:
RESULT: Leaf

Client: Now I've got a composite tree:
RESULT: Branch(Branch(Leaf+Leaf)+Branch(Leaf))

Client: I don't need to check the components classes even when managing the tree:
RESULT: Branch(Branch(Leaf+Leaf)+Branch(Leaf)+Leaf)

다른 언어로 작성된 복합체

C#으로 작성된 복합체 C++로 작성된 복합체 Go로 작성된 복합체 자바로 작성된 복합체 PHP로 작성된 복합체 루비로 작성된 복합체 러스트로 작성된 복합체 스위프트로 작성된 복합체 타입스크립트로 작성된 복합체