![전략](/images/patterns/cards/strategy-mini.png?id=d38abee4fb6f2aed909d262bdadca936)
러스트로 작성된 전략
전략은 행동들의 객체들을 객체들로 변환하며 이들이 원래 콘텍스트 객체 내에서 상호 교환이 가능하게 만드는 행동 디자인 패턴입니다.
원래 객체는 콘텍스트라고 불리며 전략 객체에 대한 참조를 포함합니다. 콘텍스트는 행동의 실행을 연결된 전략 객체에 위임합니다. 콘텍스트가 작업을 수행하는 방식을 변경하기 위하여 다른 객체들은 현재 연결된 전략 객체를 다른 전략 객체와 대체할 수 있습니다.
Conceptual Example
A conceptual Strategy example via traits.
conceptual.rs
/// Defines an injectable strategy for building routes.
trait RouteStrategy {
fn build_route(&self, from: &str, to: &str);
}
struct WalkingStrategy;
impl RouteStrategy for WalkingStrategy {
fn build_route(&self, from: &str, to: &str) {
println!("Walking route from {} to {}: 4 km, 30 min", from, to);
}
}
struct PublicTransportStrategy;
impl RouteStrategy for PublicTransportStrategy {
fn build_route(&self, from: &str, to: &str) {
println!(
"Public transport route from {} to {}: 3 km, 5 min",
from, to
);
}
}
struct Navigator<T: RouteStrategy> {
route_strategy: T,
}
impl<T: RouteStrategy> Navigator<T> {
pub fn new(route_strategy: T) -> Self {
Self { route_strategy }
}
pub fn route(&self, from: &str, to: &str) {
self.route_strategy.build_route(from, to);
}
}
fn main() {
let navigator = Navigator::new(WalkingStrategy);
navigator.route("Home", "Club");
navigator.route("Club", "Work");
let navigator = Navigator::new(PublicTransportStrategy);
navigator.route("Home", "Club");
navigator.route("Club", "Work");
}
Output
Walking route from Home to Club: 4 km, 30 min Walking route from Club to Work: 4 km, 30 min Public transport route from Home to Club: 3 km, 5 min Public transport route from Club to Work: 3 km, 5 min
Functional approach
Functions and closures simplify Strategy implementation as you can inject behavior right into the object without complex interface definition.
It seems that Strategy is often implicitly and widely used in the modern development with Rust, e.g. it's just like iterators work:
let a = [0i32, 1, 2];
let mut iter = a.iter().filter(|x| x.is_positive());
functional.rs
type RouteStrategy = fn(from: &str, to: &str);
fn walking_strategy(from: &str, to: &str) {
println!("Walking route from {} to {}: 4 km, 30 min", from, to);
}
fn public_transport_strategy(from: &str, to: &str) {
println!(
"Public transport route from {} to {}: 3 km, 5 min",
from, to
);
}
struct Navigator {
route_strategy: RouteStrategy,
}
impl Navigator {
pub fn new(route_strategy: RouteStrategy) -> Self {
Self { route_strategy }
}
pub fn route(&self, from: &str, to: &str) {
(self.route_strategy)(from, to);
}
}
fn main() {
let navigator = Navigator::new(walking_strategy);
navigator.route("Home", "Club");
navigator.route("Club", "Work");
let navigator = Navigator::new(public_transport_strategy);
navigator.route("Home", "Club");
navigator.route("Club", "Work");
let navigator = Navigator::new(|from, to| println!("Specific route from {} to {}", from, to));
navigator.route("Home", "Club");
navigator.route("Club", "Work");
}
Output
Walking route from Home to Club: 4 km, 30 min Walking route from Club to Work: 4 km, 30 min Public transport route from Home to Club: 3 km, 5 min Public transport route from Club to Work: 3 km, 5 min Specific route from Home to Club Specific route from Club to Work