Singleton is a creational design pattern, which ensures that only one object of its kind exists and provides a single point of access to it for any other code.
Singleton has almost the same pros and cons as global variables. Although they’re super-handy, they break the modularity of your code.
You can’t just use a class that depends on a Singleton in some other context, without carrying over the Singleton to the other context. Most of the time, this limitation comes up during the creation of unit tests.
Conceptual Example
This example illustrates the structure of the Singleton design pattern and focuses on the following questions:
What classes does it consist of?
What roles do these classes play?
In what way the elements of the pattern are related?
After learning about the pattern’s structure it’ll be easier for you to grasp the following example, based on a real-world PHP use case.
index.php: Conceptual example
<?php
namespace RefactoringGuru\Singleton\Conceptual;
/**
* The Singleton class defines the `GetInstance` method that serves as an
* alternative to constructor and lets clients access the same instance of this
* class over and over.
*/
class Singleton
{
/**
* The Singleton's instance is stored in a static field. This field is an
* array, because we'll allow our Singleton to have subclasses. Each item in
* this array will be an instance of a specific Singleton's subclass. You'll
* see how this works in a moment.
*/
private static $instances = [];
/**
* The Singleton's constructor should always be private to prevent direct
* construction calls with the `new` operator.
*/
protected function __construct() { }
/**
* Singletons should not be cloneable.
*/
protected function __clone() { }
/**
* Singletons should not be restorable from strings.
*/
public function __wakeup()
{
throw new \Exception("Cannot unserialize a singleton.");
}
/**
* This is the static method that controls the access to the singleton
* instance. On the first run, it creates a singleton object and places it
* into the static field. On subsequent runs, it returns the client existing
* object stored in the static field.
*
* This implementation lets you subclass the Singleton class while keeping
* just one instance of each subclass around.
*/
public static function getInstance(): Singleton
{
$cls = static::class;
if (!isset(self::$instances[$cls])) {
self::$instances[$cls] = new static();
}
return self::$instances[$cls];
}
/**
* Finally, any singleton should define some business logic, which can be
* executed on its instance.
*/
public function someBusinessLogic()
{
// ...
}
}
/**
* The client code.
*/
function clientCode()
{
$s1 = Singleton::getInstance();
$s2 = Singleton::getInstance();
if ($s1 === $s2) {
echo "Singleton works, both variables contain the same instance.";
} else {
echo "Singleton failed, variables contain different instances.";
}
}
clientCode();
Output.txt: Execution result
Singleton works, both variables contain the same instance.
Real World Example
The Singleton pattern is notorious for limiting code reuse and complicating unit testing. However, it’s still very useful in some cases. In particular, it’s handy when you need to control some shared resources. For example, a global logging object that has to control the access to a log file. Another good example: a shared runtime configuration storage.
index.php: Real world example
<?php
namespace RefactoringGuru\Singleton\RealWorld;
/**
* If you need to support several types of Singletons in your app, you can
* define the basic features of the Singleton in a base class, while moving the
* actual business logic (like logging) to subclasses.
*/
class Singleton
{
/**
* The actual singleton's instance almost always resides inside a static
* field. In this case, the static field is an array, where each subclass of
* the Singleton stores its own instance.
*/
private static $instances = [];
/**
* Singleton's constructor should not be public. However, it can't be
* private either if we want to allow subclassing.
*/
protected function __construct() { }
/**
* Cloning and unserialization are not permitted for singletons.
*/
protected function __clone() { }
public function __wakeup()
{
throw new \Exception("Cannot unserialize singleton");
}
/**
* The method you use to get the Singleton's instance.
*/
public static function getInstance()
{
$subclass = static::class;
if (!isset(self::$instances[$subclass])) {
// Note that here we use the "static" keyword instead of the actual
// class name. In this context, the "static" keyword means "the name
// of the current class". That detail is important because when the
// method is called on the subclass, we want an instance of that
// subclass to be created here.
self::$instances[$subclass] = new static();
}
return self::$instances[$subclass];
}
}
/**
* The logging class is the most known and praised use of the Singleton pattern.
* In most cases, you need a single logging object that writes to a single log
* file (control over shared resource). You also need a convenient way to access
* that instance from any context of your app (global access point).
*/
class Logger extends Singleton
{
/**
* A file pointer resource of the log file.
*/
private $fileHandle;
/**
* Since the Singleton's constructor is called only once, just a single file
* resource is opened at all times.
*
* Note, for the sake of simplicity, we open the console stream instead of
* the actual file here.
*/
protected function __construct()
{
$this->fileHandle = fopen('php://stdout', 'w');
}
/**
* Write a log entry to the opened file resource.
*/
public function writeLog(string $message): void
{
$date = date('Y-m-d');
fwrite($this->fileHandle, "$date: $message\n");
}
/**
* Just a handy shortcut to reduce the amount of code needed to log messages
* from the client code.
*/
public static function log(string $message): void
{
$logger = static::getInstance();
$logger->writeLog($message);
}
}
/**
* Applying the Singleton pattern to the configuration storage is also a common
* practice. Often you need to access application configurations from a lot of
* different places of the program. Singleton gives you that comfort.
*/
class Config extends Singleton
{
private $hashmap = [];
public function getValue(string $key): string
{
return $this->hashmap[$key];
}
public function setValue(string $key, string $value): void
{
$this->hashmap[$key] = $value;
}
}
/**
* The client code.
*/
Logger::log("Started!");
// Compare values of Logger singleton.
$l1 = Logger::getInstance();
$l2 = Logger::getInstance();
if ($l1 === $l2) {
Logger::log("Logger has a single instance.");
} else {
Logger::log("Loggers are different.");
}
// Check how Config singleton saves data...
$config1 = Config::getInstance();
$login = "test_login";
$password = "test_password";
$config1->setValue("login", $login);
$config1->setValue("password", $password);
// ...and restores it.
$config2 = Config::getInstance();
if ($login == $config2->getValue("login") &&
$password == $config2->getValue("password")
) {
Logger::log("Config singleton also works fine.");
}
Logger::log("Finished!");
Output.txt: Execution result
2018-06-04: Started!
2018-06-04: Logger has a single instance.
2018-06-04: Config singleton also works fine.
2018-06-04: Finished!