WINTER SALE IS ON!
Bridge

Bridge in C#

Bridge is a structural design pattern that divides business logic or huge class into separate class hierarchies that can be developed independently.

One of these hierarchies (often called the Abstraction) will get a reference to an object of the second hierarchy (Implementation). The abstraction will be able to delegate some (sometimes, most) of its calls to the implementations object. Since all implementations will have a common interface, they’d be interchangeable inside the abstraction.

Complexity:

Popularity:

Usage examples: The Bridge pattern is especially useful when dealing with cross-platform apps, supporting multiple types of database servers or working with several API providers of a certain kind (for example, cloud platforms, social networks, etc.)

Identification: Bridge can be recognized by a clear distinction between some controlling entity and several different platforms that it relies on.

Conceptual Example

This example illustrates the structure of the Bridge design pattern. It focuses on answering these questions:

  • What classes does it consist of?
  • What roles do these classes play?
  • In what way the elements of the pattern are related?

Program.cs: Conceptual example

using System;

namespace RefactoringGuru.DesignPatterns.Bridge.Conceptual
{
    // The Abstraction defines the interface for the "control" part of the two
    // class hierarchies. It maintains a reference to an object of the
    // Implementation hierarchy and delegates all of the real work to this
    // object.
    class Abstraction
    {
        protected IImplementation _implementation;
		
        public Abstraction(IImplementation implementation)
        {
            this._implementation = implementation;
        }
		
        public virtual string Operation()
        {
            return "Abstract: Base operation with:\n" + 
                _implementation.OperationImplementation();
        }
    }

    // You can extend the Abstraction without changing the Implementation
    // classes.
    class ExtendedAbstraction : Abstraction
    {
        public ExtendedAbstraction(IImplementation implementation) : base(implementation)
        {
		}
		
        public override string Operation()
        {
            return "ExtendedAbstraction: Extended operation with:\n" +
                base._implementation.OperationImplementation();
        }
    }

    // The Implementation defines the interface for all implementation classes.
    // It doesn't have to match the Abstraction's interface. In fact, the two
    // interfaces can be entirely different. Typically the Implementation
    // interface provides only primitive operations, while the Abstraction
    // defines higher- level operations based on those primitives.
    public interface IImplementation
    {
        string OperationImplementation();
    }

    // Each Concrete Implementation corresponds to a specific platform and
    // implements the Implementation interface using that platform's API.
    class ConcreteImplementationA : IImplementation
    {
        public string OperationImplementation()
        {
            return "ConcreteImplementationA: The result in platform A.\n";
        }
    }

    class ConcreteImplementationB : IImplementation
    {
        public string OperationImplementation()
        {
            return "ConcreteImplementationB: The result in platform B.\n";
        }
    }

    class Client
    {
        // Except for the initialization phase, where an Abstraction object gets
        // linked with a specific Implementation object, the client code should
        // only depend on the Abstraction class. This way the client code can
        // support any abstraction-implementation combination.
        public void ClientCode(Abstraction abstraction)
        {
            Console.Write(abstraction.Operation());
        }
    }
    
    class Program
    {
        static void Main(string[] args)
        {
            Client client = new Client();

            Abstraction abstraction;
            // The client code should be able to work with any pre-configured
            // abstraction-implementation combination.
            abstraction = new Abstraction(new ConcreteImplementationA());
            client.ClientCode(abstraction);
            
            Console.WriteLine();
            
            abstraction = new ExtendedAbstraction(new ConcreteImplementationB());
            client.ClientCode(abstraction);
        }
    }
}

Output.txt: Execution result

Abstract: Base operation with:
ConcreteImplementationA: The result in platform A.

ExtendedAbstraction: Extended operation with:
ConcreteImplementationA: The result in platform B.

Bridge in Other Languages

Bridge in C++ Bridge in Go Bridge in Java Bridge in PHP Bridge in Python Bridge in Ruby Bridge in Rust Bridge in Swift Bridge in TypeScript