Spring SALE
Prototype

Prototype in Python

Prototype is a creational design pattern that allows cloning objects, even complex ones, without coupling to their specific classes.

All prototype classes should have a common interface that makes it possible to copy objects even if their concrete classes are unknown. Prototype objects can produce full copies since objects of the same class can access each other’s private fields.

Complexity:

Popularity:

Usage examples: The Prototype pattern is available in Python out of the box with a copy module.

Identification: The prototype can be easily recognized by a clone or copy methods, etc.

Conceptual Example

This example illustrates the structure of the Prototype design pattern. It focuses on answering these questions:

  • What classes does it consist of?
  • What roles do these classes play?
  • In what way the elements of the pattern are related?

main.py: Conceptual example

import copy


class SelfReferencingEntity:
    def __init__(self):
        self.parent = None

    def set_parent(self, parent):
        self.parent = parent


class SomeComponent:
    """
    Python provides its own interface of Prototype via `copy.copy` and
    `copy.deepcopy` functions. And any class that wants to implement custom
    implementations have to override `__copy__` and `__deepcopy__` member
    functions.
    """

    def __init__(self, some_int, some_list_of_objects, some_circular_ref):
        self.some_int = some_int
        self.some_list_of_objects = some_list_of_objects
        self.some_circular_ref = some_circular_ref

    def __copy__(self):
        """
        Create a shallow copy. This method will be called whenever someone calls
        `copy.copy` with this object and the returned value is returned as the
        new shallow copy.
        """

        # First, let's create copies of the nested objects.
        some_list_of_objects = copy.copy(self.some_list_of_objects)
        some_circular_ref = copy.copy(self.some_circular_ref)

        # Then, let's clone the object itself, using the prepared clones of the
        # nested objects.
        new = self.__class__(
            self.some_int, some_list_of_objects, some_circular_ref
        )
        new.__dict__.update(self.__dict__)

        return new

    def __deepcopy__(self, memo=None):
        """
        Create a deep copy. This method will be called whenever someone calls
        `copy.deepcopy` with this object and the returned value is returned as
        the new deep copy.

        What is the use of the argument `memo`? Memo is the dictionary that is
        used by the `deepcopy` library to prevent infinite recursive copies in
        instances of circular references. Pass it to all the `deepcopy` calls
        you make in the `__deepcopy__` implementation to prevent infinite
        recursions.
        """
        if memo is None:
            memo = {}

        # First, let's create copies of the nested objects.
        some_list_of_objects = copy.deepcopy(self.some_list_of_objects, memo)
        some_circular_ref = copy.deepcopy(self.some_circular_ref, memo)

        # Then, let's clone the object itself, using the prepared clones of the
        # nested objects.
        new = self.__class__(
            self.some_int, some_list_of_objects, some_circular_ref
        )
        new.__dict__ = copy.deepcopy(self.__dict__, memo)

        return new


if __name__ == "__main__":

    list_of_objects = [1, {1, 2, 3}, [1, 2, 3]]
    circular_ref = SelfReferencingEntity()
    component = SomeComponent(23, list_of_objects, circular_ref)
    circular_ref.set_parent(component)

    shallow_copied_component = copy.copy(component)

    # Let's change the list in shallow_copied_component and see if it changes in
    # component.
    shallow_copied_component.some_list_of_objects.append("another object")
    if component.some_list_of_objects[-1] == "another object":
        print(
            "Adding elements to `shallow_copied_component`'s "
            "some_list_of_objects adds it to `component`'s "
            "some_list_of_objects."
        )
    else:
        print(
            "Adding elements to `shallow_copied_component`'s "
            "some_list_of_objects doesn't add it to `component`'s "
            "some_list_of_objects."
        )

    # Let's change the set in the list of objects.
    component.some_list_of_objects[1].add(4)
    if 4 in shallow_copied_component.some_list_of_objects[1]:
        print(
            "Changing objects in the `component`'s some_list_of_objects "
            "changes that object in `shallow_copied_component`'s "
            "some_list_of_objects."
        )
    else:
        print(
            "Changing objects in the `component`'s some_list_of_objects "
            "doesn't change that object in `shallow_copied_component`'s "
            "some_list_of_objects."
        )

    deep_copied_component = copy.deepcopy(component)

    # Let's change the list in deep_copied_component and see if it changes in
    # component.
    deep_copied_component.some_list_of_objects.append("one more object")
    if component.some_list_of_objects[-1] == "one more object":
        print(
            "Adding elements to `deep_copied_component`'s "
            "some_list_of_objects adds it to `component`'s "
            "some_list_of_objects."
        )
    else:
        print(
            "Adding elements to `deep_copied_component`'s "
            "some_list_of_objects doesn't add it to `component`'s "
            "some_list_of_objects."
        )

    # Let's change the set in the list of objects.
    component.some_list_of_objects[1].add(10)
    if 10 in deep_copied_component.some_list_of_objects[1]:
        print(
            "Changing objects in the `component`'s some_list_of_objects "
            "changes that object in `deep_copied_component`'s "
            "some_list_of_objects."
        )
    else:
        print(
            "Changing objects in the `component`'s some_list_of_objects "
            "doesn't change that object in `deep_copied_component`'s "
            "some_list_of_objects."
        )

    print(
        f"id(deep_copied_component.some_circular_ref.parent): "
        f"{id(deep_copied_component.some_circular_ref.parent)}"
    )
    print(
        f"id(deep_copied_component.some_circular_ref.parent.some_circular_ref.parent): "
        f"{id(deep_copied_component.some_circular_ref.parent.some_circular_ref.parent)}"
    )
    print(
        "^^ This shows that deepcopied objects contain same reference, they "
        "are not cloned repeatedly."
    )

Output.txt: Execution result

Adding elements to `shallow_copied_component`'s some_list_of_objects adds it to `component`'s some_list_of_objects.
Changing objects in the `component`'s some_list_of_objects changes that object in `shallow_copied_component`'s some_list_of_objects.
Adding elements to `deep_copied_component`'s some_list_of_objects doesn't add it to `component`'s some_list_of_objects.
Changing objects in the `component`'s some_list_of_objects doesn't change that object in `deep_copied_component`'s some_list_of_objects.
id(deep_copied_component.some_circular_ref.parent): 4429472784
id(deep_copied_component.some_circular_ref.parent.some_circular_ref.parent): 4429472784
^^ This shows that deepcopied objects contain same reference, they are not cloned repeatedly.

Prototype in Other Languages

Prototype in C# Prototype in C++ Prototype in Go Prototype in Java Prototype in PHP Prototype in Ruby Prototype in Rust Prototype in Swift Prototype in TypeScript