🎉 Hooray! After 3 years of work, I've finally released the ebook on design patterns! Check it out »
Strategy

Strategy in C++

Strategy is a behavioral design pattern that turns a set of behaviors into objects and makes them interchangeable inside original context object.

The original object, called context, holds a reference to a strategy object and delegates it executing the behavior. In order to change the way the context performs its work, other objects may replace the currently linked strategy object with another one.

Usage of the pattern in C++

Complexity:

Popularity:

Usage examples: The Strategy pattern is very common in C++ code. It’s often used in various frameworks to provide users a way to change the behavior of a class without extending it.

Identification: Strategy pattern can be recognized by a method that lets nested object do the actual work, as well as the setter that allows replacing that object with a different one.

Conceptual Example

This example illustrates the structure of the Strategy design pattern. It focuses on answering these questions:

  • What classes does it consist of?
  • What roles do these classes play?
  • In what way the elements of the pattern are related?

main.cc: Conceptual example

/**
 * The Strategy interface declares operations common to all supported versions
 * of some algorithm.
 *
 * The Context uses this interface to call the algorithm defined by Concrete
 * Strategies.
 */
class Strategy
{
public:
    virtual ~Strategy() {}
    virtual std::string DoAlgorithm(const std::vector<std::string> &data) const = 0;
};

/**
 * The Context defines the interface of interest to clients.
 */

class Context
{
    /**
     * @var Strategy The Context maintains a reference to one of the Strategy
     * objects. The Context does not know the concrete class of a strategy. It
     * should work with all strategies via the Strategy interface.
     */
private:
    Strategy *strategy_;
    /**
     * Usually, the Context accepts a strategy through the constructor, but also
     * provides a setter to change it at runtime.
     */
public:
    Context(Strategy *strategy = nullptr) : strategy_(strategy)
    {
    }
    ~Context()
    {
        delete this->strategy_;
    }
    /**
     * Usually, the Context allows replacing a Strategy object at runtime.
     */
    void set_strategy(Strategy *strategy)
    {
        delete this->strategy_;
        this->strategy_ = strategy;
    }
    /**
     * The Context delegates some work to the Strategy object instead of
     * implementing +multiple versions of the algorithm on its own.
     */
    void DoSomeBusinessLogic() const
    {
        // ...
        std::cout << "Context: Sorting data using the strategy (not sure how it'll do it)\n";
        std::string result = this->strategy_->DoAlgorithm(std::vector<std::string>{"a", "e", "c", "b", "d"});
        std::cout << result << "\n";
        // ...
    }
};

/**
 * Concrete Strategies implement the algorithm while following the base Strategy
 * interface. The interface makes them interchangeable in the Context.
 */
class ConcreteStrategyA : public Strategy
{
public:
    std::string DoAlgorithm(const std::vector<std::string> &data) const override
    {
        std::string result;
        std::for_each(std::begin(data), std::end(data), [&result](const std::string &letter) {
            result += letter;
        });
        std::sort(std::begin(result), std::end(result));

        return result;
    }
};
class ConcreteStrategyB : public Strategy
{
    std::string DoAlgorithm(const std::vector<std::string> &data) const override
    {
        std::string result;
        std::for_each(std::begin(data), std::end(data), [&result](const std::string &letter) {
            result += letter;
        });
        std::sort(std::begin(result), std::end(result));
        for (int i = 0; i < result.size() / 2; i++)
        {
            std::swap(result[i], result[result.size() - i - 1]);
        }

        return result;
    }
};
/**
 * The client code picks a concrete strategy and passes it to the context. The
 * client should be aware of the differences between strategies in order to make
 * the right choice.
 */

void ClientCode()
{
    Context *context = new Context(new ConcreteStrategyA);
    std::cout << "Client: Strategy is set to normal sorting.\n";
    context->DoSomeBusinessLogic();
    std::cout << "\n";
    std::cout << "Client: Strategy is set to reverse sorting.\n";
    context->set_strategy(new ConcreteStrategyB);
    context->DoSomeBusinessLogic();
    delete context;
}

int main()
{
    ClientCode();
    return 0;
}

Output.txt: Execution result

Client: Strategy is set to normal sorting.
Context: Sorting data using the strategy (not sure how it'll do it)
abcde

Client: Strategy is set to reverse sorting.
Context: Sorting data using the strategy (not sure how it'll do it)
edcba

  

Strategy in Other Languages

Design Patterns: Strategy in Java Design Patterns: Strategy in C# Design Patterns: Strategy in PHP Design Patterns: Strategy in Python Design Patterns: Strategy in Ruby Design Patterns: Strategy in Swift Design Patterns: Strategy in TypeScript Design Patterns: Strategy in Go